
pdfTEX
users manual

Hàn Thê Thành Sebastian Rahtz Hans Hagen

mailto:thanh@informatics.muni.cz
mailto:s.rahtz@elsevier.co.uk
mailto:pragma@wxs.nl

content The pdfTEX user manual exit

Contents

1 Introduction

2 About PDF

3 Getting started

4 Macro packages supporting PDFTEX

5 Setting up fonts

6 Formal syntax specification

7 New primitives

8 Graphics and color

Abbreviations

1 Introduction
The main purpose of the pdfTEX project was to create an extension of TEX that can create pdf directly from

TEX source files and improve/enhance the result of TEX typesetting with the help of pdf. When pdf output

is not selected, pdfTEX produces normal dvi output, otherwise it produces pdf output that looks identical

to the dvi output. An important aspect of this project is to investigate alternative justification algorithms,

optionally making use of multiple master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix, Win32

and MSDos systems. It is still under beta development and all features are liable to change. Despite its β--

state, pdfTEX produces excellent pdf code.

As pdfTEX evolves, this manual will evolve and more background information will be added. Be patient with

the authors.

This manual is typeset in ConTEXt. One can generate an A4 version from the source code by saying:

texexec pdftex-t

An letter size variant is also supported:

texexec --mode=letter pdftex-t

�
�

�
�

�
�

content The pdfTEX user manual exit

Given that the A4 version is typeset, one can generate a booklet by saying:

texexec --pdfarrange --paper=a5a4 --print=up --addempty=1,2 pdftex-t

This also demonstrates that pdfTEX can be used for page imposition purposes (given that pdfTEX and the

fonts are set up all right).

We thank all readers who send us corrections and suggestions. We also wish to express the hope that pdfTEX

will be of as much use to you as it is to us. Since pdfTEX is still being improved and extended, we suggest

you keep track of updates.

2 About PDF
The cover of this manual shows a simple pdf file. Unless compression and/or encryption is applied, such a

file is rather verbose and readable. The first line specifies the version used; currently pdfTEX produces level

1.2 output. Viewers are supposed to silently skip over all elements they cannot handle.

A pdf file consist of objects. These objects can be recognized by their number and keywords:

8 0 obj << /Type /Catalog /Pages 6 0 R >> endobj

Here 8 0 obj ... endobj is the object capsule. The first number is the object number. Later we will see

that pdfTEX gives access to this number. One can for instance create an object by using \pdfobj after which

\pdflastobj returns the number. So

\pdfobj{/Type /Catalog /Pages 6 0 R}

inserts an object into the file, while \pdflastobj returns the number pdfTEX assigned to this object. The

sequence 6 0 R is an object reference, a pointer to another object. The second number (here a zero) is

currently not used in pdfTEX; it is the version number of the object. It is for instance used by pdf editors,

when they replace objects by new ones.

�
�

�
�

�
�

content The pdfTEX user manual exit

In general this rather direct way of pushing objects in the files is rather useless and only makes sense when

implementing for instance fill--in field support or annotation content reuse. We will come to that later.

Unless such direct objects are part of something larger, they will end up as isolated entities, not doing any

harm but not doing any good either.

When a viewer opens a pdf file, it first goes to the end of the file. There it finds the keyword startxref, the

signal where to look for the so called ‘object cross reference table’. This table provides fast access to the

objects that make up the file. The actual starting point of the file is defined after the trailer. The /Root

entry points to the catalog. In this catalog the viewer can find the page list. In our example we have only

one page. The trailer also holds an /Info entry, which tells a bit more about the document. Just follow the

thread:

/Root −→ object 8 −→ /Pages −→ object 6 −→ /Kids −→ object 2 −→ page content

As soon as we add annotations, a fancy word for hyperlinks and alike, some more entries are present in the

catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the level

of compression can be set with \pdfcompresslevel. Let’s take a closer look at this stream. First there

is a transformation matrix, six numbers followed by cm. As in PostScript, the operator comes after the

operands. Between BT and ET comes the text. A font switch can be recognized as /F... The actual text goes

between () so that it creates a PostScript string. When one analyzes a file produced by a less sophisticated

typesetting engine, whole sequences of words can be recognized. In TEX however, the text comes out rather

fragmented, mainly because a lot of kerning takes place. Because viewers can search in these streams, one

can imagine that the average TEX produced files becomes more difficult as soon as the typesetting engine

does a better job; TEX cannot do less.

This one page example uses an Adobe Times Roman font. This is one of the 14 fonts that is always present

in the viewer application, and is called a base font. However, when we use for instance Computer Modern

Roman, we have to make sure that this font is available, and the best way to do this is to embed it in the file.

�
�

�
�

�
�

content The pdfTEX user manual exit

Just let your eyes follow the object thread and see how a font is described. The only thing missing in this

example is the (partially) embedded glyph description file, which for the base fonts is not needed.

In this simple file, we don’t specify in what way the file should be opened, for instance full screen or clipped.

A closer look at the page object (/Type /Page) shows that a mediabox is part of the page description.

A mediabox acts like the bounding box in a PostScript file. pdfTEX users have access to this object by

\pdfpageattr.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access to

many of the entries described here, either automatically by translating the TEX data structures into pdf

ones, or manually by pushing entries to the catalog, page, info or self created objects. Those who, after this

introduction, feel uncomfortable in how to proceed, are advised to read on but skip section 7. Before we

come to that section, we will describe how to get started with pdfTEX.

3 Getting started
This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not yet installed.

Some TEX distributions have pdfTEX as a component, like teTEX, fpTEX, MikTeX and CMacTEX, so when you

use one of them, you don’t need to bother with the pdfTEX installation. Note that the installation description

in this manual is Web2c--specific.

For some years there has been a ‘moderate’ successor to TEX available, called e-TEX. Because the main stream

macro packages start supporting this welcome extension, pdfTEX also is available as pdfe-TEX. Although in

this document we will speak of pdfTEX, we advise users to use pdfe-TEX when available. That way they get

the best of all worlds and are ready for the future.

3.1 Getting sources and binaries

The latest sources of pdfTEX are distributed together with precompiled binaries of pdfTEX for some plat-

�
�

�
�

�
�

content The pdfTEX user manual exit

forms, including Linux1 , SGI IRIX, Sun SPARC Solaris and MSDos (djgpp).2 The primary location where one

can fetch the source code (by version) is:

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest

Thomas Esser’s teTEX distribution comes with precompiled versions for many Unix systems. More informa-

tion can be found at: http://www.tug.org/teTeX. For Win32 systems (Windows 95, Windows NT) there are

two packages that contain pdfTEX, both in ctan:systems/win32: fpTEX, maintained by Fabrice Popineau,

popineau@ese-metz.fr, and MikTeX by Christian Schenk, cschenk@berlin.snafu.de.

3.2 Compiling

If there is no precompiled binary of pdfTEX for your system, you need to build pdfTEX from sources. The

compilation is expected to be easy on Unix--like systems and can be described best by example. Assuming

that all needed files are downloaded to $HOME/pdftex, on a Unix system the following steps are needed to

compile pdfTEX:

cd $HOME/pdftex

gunzip < web-7.3.tar.gz | tar xvf -

gunzip < web2c-7.3.tar.gz | tar xvf -

gunzip < pdftex.tar.gz | tar xvf -

mv pdftexdir web2c-7.3/web2c

cd web2c-7.3

./configure

cd web2c

make pdftex

1The Linux binary is compiled for the new libc-6 (gnu glibc-2.0), which will not run for users of older Linux installations still based

on libc-5.
2The djgpp version is built by djgpp 2.0 cross--compiler on Linux.

�
�

�
�

�
�

ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/latest
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32
popineau@ese-metz.fr
popineau@ese-metz.fr
popineau@ese-metz.fr
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de
cschenk@berlin.snafu.de

content The pdfTEX user manual exit

If you happen to have a previously configured source tree and just install a new version of pdfTEX, you can

avoid running configure from the top--level directory. It’s quicker to run config.status, which will just

regenerate the Makefile’s based on config.cache:

cd web2c-7.3/web2c

sh config.status

make pdftex

For Unix users the savest way to generate binaries is to get the latest teTEX and follow the instructions that

come with it.

Apart from the binary of pdfTEX the compilation also produces several other files which are needed for

running pdfTEX:

pdftex.pool The pool file, needed for creating formats, located in web2c-7.3/web2c

texmf.cnf Web2c run--time configuration file, located in web2c-7.3/kpathsea

ttf2afm An external program to generate afm files from TrueType fonts, located in web2c-7.3/web2c

/pdftexdir

Precompiled binaries are included in the zip archive pdftex.zip.

3.3 Getting PDFTEX--specific platform--independent files

Apart from the above--mentioned files, there is another zip archive (pdftexlib.zip) in the pdfTEX distribu-

tion which contains platform--independent files required for running pdfTEX:

• configuration file: pdftex.cfg

• encoding vectors: *.enc

• map files: *.map

• macros: *.tex

�
�

�
�

�
�

content The pdfTEX user manual exit

Unpacking this archive —don’t forget the -d option when using pkunzip— will create a texmf tree containing

pdfTEX--specific files.

3.4 Placing files

The next step is to place the binaries somewhere in PATH. If you want to use LATEX, you also need to make a

copy (or symbolic link) of pdftex and name it pdflatex. The files texmf.cnf and pdftex.pool and the

directory texmf, created by unpacking the file pdftexlib.zip, should be moved to the ‘appropriate’ place

(see below).

3.5 Setting search paths

Web2c--based programs, including pdfTEX, use the Web2c run--time configuration file called texmf.cnf. This

file can be found via the user--set environment variable TEXMFCNF or via the compile--time default value if

the former is not set. It is strongly recommended to use the first option. Next you need to edit texmf.cnf

so pdfTEX can find all necessary files. Usually one has to edit TEXMFS and maybe some of the next variables.

When running pdfTEX, some extra search paths are used beyond those normally requested by TEX itself:

VFFONTS Virtual fonts are fonts made up of others and vf files play an important role in this

process. Because pdfTEX produces the final output code, it must consult those files.

T1FONTS Outline (vector) fonts are to be prefered over bitmap pk fonts. In most cases Type 1 fonts

are used and this variable tells pdfTEX where to find them.

TTFONTS Like Type 1 fonts, TrueType fonts are also outlines.

MISCFONTS pdfTEX is able to read so called pdf glyph container files. These contain fonts de-

scriptions in pdf format. (A separate manual will be made available soon.)

�
�

�
�

�
�

content The pdfTEX user manual exit

used for format texmf.cnf

virtual fonts kpse vf format VFFONTS

type1 fonts kpse type1 format T1FONTS

truetype fonts kpse truetype format TTFONTS

pgc fonts kpse miscfonts format MISCFONTS

pdftex.cfg kpse tex format TEXINPUTS

images kpse tex format TEXINPUTS

map files kpse tex ps header format TEXPSHEADERS

encoding files kpse tex ps header format TEXPSHEADERS

Table 1 The Web2c variables.

PKFONTS Unfortunately bitmap fonts are displayed poorly by pdf viewers, so when possible one

should use outline fonts. When no outline is available, pdfTEX tries to locate a suitable

pk font (or invoke a process that generates them).

TEXINPUTS This variable specifies where pdfTEX finds its configuration file and input files. Being a

postprocessor too, image files are considered input files and searched for along this path.

TEXPSHEADERS This is the path where pdfTEX looks for the font mapping files (*.map) and encoding files

(*.enc). Both types provide pdfTEX the information needed for embedding font encoding

vectors and font resources.

3.6 The PDFTEX configuration file

One has to keep in mind that, opposed to dvi output, there is no postprocessing stage. This has several rather

fundamental consequences, like one--pass graphic and font inclusion. When TEX builds a page, the macro

�
�

�
�

�
�

content The pdfTEX user manual exit

package used quite certain has a concept of page dimensions, which is not the same as paper dimensions.

The reference point of the page is the top--left corner.

Most dvi postprocessors enable the user to specify the paper size, which often defaults to ‘A4’ or ‘letter’.

In most cases it does not harm that much to mix the two, because one will seldom put too small paper in

the printer. And, if one does, one will certainly not do that a second time. In pdf the paper size is part of

the definition. This means that everything that is off page, is clipped off, it simply disappears. Even worse,

just like in a PostScript file, the reference point is in the lower corner, which is opposite to dvi’s reference

point.

And so, we’ve found one of the main reasons why pdfTEX explicitly needs to know the paper dimensions.

These dimensions can either be passed using the so called configuration file, or by using the primitives

provided for this purpose. In this respect, the pdfTEX configuration file can be compared to configuration

files that come with dvi postprocessors and/or command line options. Both contain information on the

paper used, the fonts to be included and optimizations to be applied.

When pdfTEX is run in ini--mode, which is normally the case when we generate a format file, the configuration

file is not read at all, and all configuration parameters are set to 0 by default for both integer and dimension

parameters.

When pdfTEX is launched in non--ini mode, it reads the Web2c configuration file as well as the pdfTEX config-

uration file called pdftex.cfg, searched for in the TEXINPUTS path. As Web2c systems commonly specify

a ‘private’ tree for pdfTEX where configuration and map files are located, this allows individual users or

projects to maintain customized versions of the configuration file. The configuration file must exist when

pdfTEX is run (except when generating a format).

The integer configuration parameters replace the corresponding internal ones just before pdfTEX starts

reading the input file. At this moment the format is already loaded, so any former settings during creat-

ing formats will be overwritten by the values from config file. So, unless the macro package used resets

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfoutput, pdfTEX will produce pdf output! Macros (packages) that adapt themselves to either dvi (using

specials) or pdf (dedicated primitives) should be aware of this.

When at the moment the first page is shipped out \pdfoutput has positive value, the configuation parame-

ters that are dimension overwrite only the corresponding internal ones that are 0. The value of \pdfoutput

cannot be changed after the first page has been shipped out.

Most parameters in the configuration file have a corresponding internal register. When not set during the

TEX run, pdfTEX uses the values as specified in the configuration file.

internal name parameters type

\pdfoutput output format integer

\pdfadjustspacing adjust spacing level integer

\pdfcompresslevel compress level integer

\pdfdecimaldigits decimal digits integer

\pdfmovechars move chars integer

\pdfimageresolution image resolution integer

\pdfpkresolution pk resolution integer

\pdfhorigin horigin dimension

\pdfvorigin vorigin dimension

\pdfpageheight page height dimension

\pdfpagewidth page width dimension

\pdflinkmargin link margin dimension

\pdfthreadmargin thread margin dimension

Figure 1 The configuration parameters.

Apart from the above described parameters, the configuration file can have another entry named map. This

�
�

�
�

�
�

content The pdfTEX user manual exit

entry specifies the font mapping files, which is similar to those used by many dvi to PostScript drivers.

More than one map file can be specified, using multiple map lines. If the name of the map file is prefixed

with a +, its values are appended to the existing set, otherwise they replace it. If no map files are given, the

default value psfonts.map is used.

A typical pdftex.cfg file looks like this, setting up output for A4 paper size and the standard TEX offset of

1 inch, and loading two map files for fonts:

output_format 1 % the implicit output will be PDF

compress_level 1 % use the fastest level of compression

decimal_digits 3 % max. 3 digits after the decimal point

image_resolution 300 % when not specified, embed images at 300 DPI

pk_resolution 600 % use PK fonts at 600 DPI

move_chars 1 % move chars in 0..31 to higher area

page_width 210 true mm % A4 paper width

page_height 297 true mm % A4 paper height

horigin 1 true in % horizontal origin offset

vorigin 1 true in % vertical origin offset

map pdftex.map % standard map file

map +misc.map % map file for extra fonts

The configuration file sets default values for these parameters, and apart from the map entry, they all can

be over--ridden in the TEX source file. Dimensions can be specified as true, which makes them immune for

magnification (when set).

output format This integer parameter specifies whether the output format should be dvi or pdf. A positive

value means pdf output, otherwise we get dvi output.

compress level This integer parameter specifies the level of text and in--line graphics compression. pdfTEX

uses zip compression as provided by zlib. A value of 0 means no compression, 1 means fastest, 9 means

�
�

�
�

�
�

content The pdfTEX user manual exit

best, 2..8 means something in between. Just set this value to 9, unless there is a good reason to do otherwise

— 0 is great for testing macros that use \pdfliteral.

decimal digits This integer specifies the preciseness of real numbers in pdf page descriptions. It gives the

maximal number of decimal digits after the decimal point of real numbers. Valid values are in range 0..5. A

higher value means more precise output, but also results in a much larger file size and more time to display

or print. In most cases the optimal value is 2. This parameter does not influence the precision of numbers

used in raw pdf code, like that used in \pdfliteral and annotation action specifications.

image resolution When pdfTEX is not able to determine the natural dimensions of an image, it assumes a

resolution of type 72 dots per inch. Use this variable to change this default value.

pk resolution One can use this entry to specify the resolution for bitmap fonts. Nowadays most printers

are capable to print at least 600 dots per inch, so this is a reasonable default.

move chars Although pdf output is claimed to be portable, especially when all font information is included

in the file, problems with printing and viewing have a persistent nature. Moving the characters in range 0-31

sometimes helps a lot. When set to 1, characters are only moved when a font has less than 128 glyphs, when

set to 2 higher slots are used too.

page width & page height These two dimension parameters specify the output medium dimensions (the

paper, screen or whatever the page is put on). If they are not specified, the page width is calculated as

wbox being shipped out + 2× (horigin + \hoffset). The page height is calculated in a similar way.

horigin & vorigin These dimension parameters can be used to set the offset of the TEX output box from

the top left corner of the ‘paper’.

map This entry specifies the font mapping file, which is similar to those used by many dvi to PostScript

drivers. More than one map file can be specified, using multiple map lines. If the name of the map file is

prefixed with a +, its values are appended to the existing set, otherwise they replace it. If no map files are

given, the default value psfonts.map is used.

�
�

�
�

�
�

content The pdfTEX user manual exit

3.7 Creating formats

Formats for pdfTEX are created in the same way as for TEX. For plain TEX and LATEX it looks like:

pdftex -ini -fmt=pdftex plain \dump

pdftex -ini -fmt=pdflatex latex.ltx

In ConTEXt the generation depends on the interface used. A format using the english user interface is

generated with

pdftex -ini -fmt=cont-en cont-en

When properly set up, one can also use the ConTEXt command line interface TEXexec to generate one or

more formats, like:

texexec --make en

for an english format, or

texexec --make --tex=pdfetex en de

for an english and german one, using pdfe-TEX. Indeed, if there is pdfTEX as well as pdfe-TEX, use it! Whatever

macro package used, the formats should be placed in the TEXFORMATS path. We strongly recommend to use

pdfe-TEX, if only because the main stream macro packages (will) use it.

3.8 Testing the installation

When everything is set up, you can test the installation. In the distribution there is a plain TEX test file

example.tex. Process this file by saying:

pdftex example

If the installation is ok, this run should produce a file called example.pdf. The file example.tex is also a

good place to look for how to use pdfTEX’s new primitives.

�
�

�
�

�
�

content The pdfTEX user manual exit

3.9 Common problems

The most common problem with installations is that pdfTEX complains that something cannot be found. In

such cases make sure that TEXMFCNF is set correctly, so pdfTEX can find texmf.cnf. The next best place to

look/edit is the file texmf.cnf. When still in deep trouble, set KPATHSEA_DEBUG=255 before running pdfTEX

or run pdfTEX with option -k 255. This will cause pdfTEX to write a lot of debugging information that can

be useful to trace problems. More options can be found in the Web2c documentation.

Variables in texmf.cnf can be overwritten by environment variables. Here are some of the most common

problems you can encounter when getting started:

• I can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf.cnf, or TEXPOOL in texmf.cnf doesn’t

contain a path to the pool file pdftex.pool or pdfetex.pool when you use pdfe-TEX.

• You have to increase POOLSIZE.

pdfTEX cannot find texmf.cnf, or the value of pool_size specified in texmf.cnf is not large enough

and must be increased. If pool_size is not specified in texmf.cnf then you can add something like

pool_size = 500000

• I can’t find the format file ‘pdftex.fmt’!

I can’t find the format file ‘pdflatex.fmt’!

Format is not created (see above how to do that) or is not properly placed. Make sure that TEXFORMATS

in texmf.cnf contains the path to pdftex.fmt or pdflatex.fmt.

• Fatal format file error; I’m stymied.

This appears if you forgot to regenerate the .fmt files after installing a new version of the pdfTEX binary

and pdftex.pool.

�
�

�
�

�
�

content The pdfTEX user manual exit

• TEX.POOL doesn’t match; TANGLE me again!

TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version of the

pdfTEX binary.

• pdfTEX cannot find the configuration file pdftex.cfg, one or more map files (*.map), encoding vectors

(*.enc), virtual fonts, Type 1 fonts, TrueType fonts or some image file.

Make sure that the required file exists and the corresponding variable in texmf.cnf contains a path to

the file. See above which variables pdfTEX needs apart from the ones TEX uses.

Normally the page content takes one object. This means that one seldom finds more than a few hundred

objects in a simple file. This document for instance uses about 300 objects. In demanding applications this

number can grow quite rapidly, especially when one uses a lot of widget annotations, shared annotations

or other shared things. In these situations in texmf.cnf one can enlarge pdfTEX’s internal object table by

adding a line in texmf.cfg, for instance:

obj_tab_size = 400000

4 Macro packages supporting PDFTEX
When producing dvi output, for which one can use pdfTEX as well as any other TEX, part of the job is

delegated to the dvi postprocessor, either by directly providing this program with commands, or by means

of \specials. Because pdfTEX directly produces the final format, it has to do everything itself, from handling

color, graphics, hyperlink support, font--inclusion, upto page imposition and page manipulation.

As a direct result, when one uses a high level macro package, the macros that take care of these features

have to be set up properly. Specials for instance make no sense at all. Actually being a comment understood

by dvi postprocessors —given that the macro package speaks the specific language of this postprocessor—

�
�

�
�

�
�

content The pdfTEX user manual exit

a \special would end up as just a comment in the pdf file, which is of no use. Therefore, \special issues

a warning when pdfTEX is in pdf mode.

When one wants to get some insight to what extend pdfTEX specific support is needed, one can start a file

by saying:

\pdfoutput=1 \let\special\message

or, if this leads to confusion,

\pdfoutput=1 \def\special#1{\write16{special: #1}}

And see what happens. As soon as one ‘special’ message turns up, one knows for sure that some kind of

pdfTEX specific support is needed, and often the message itself gives a indication of what is needed.

Currently all main stream macro packages offer pdfTEX support in one way or the other. When using such

a package, it makes sense to turn on this support in the appropriate way, otherwise one cannot be sure if

things are set up right. Remember that for instance the page and paper dimensions have to be taken care

of, and only the macro package knows the details.

• For LATEX users, Sebastian Rahtz’ hyperref package has substantial support for pdfTEX, and provides

access to most of its features. In the simplest case, the user merely needs to load hyperref with a pdftex

option, and all cross--references will be converted to pdf hypertext links. pdf output is automatically

selected, compression is turned on, and the page size is set up correctly. Bookmarks are created to

match the table of contents.

• The standard LATEX graphics and color packages have pdftex options, which allow use of normal color,

text rotation, and graphics inclusion commands.

• The ConTEXt macro package by Hans Hagen (pragma@wxs.nl) has very full support for pdfTEX in its

generalized hypertext features. Support for pdfTEX is implemented as a special driver, and is invoked by

saying \setupoutput[pdftex] or feeding TEXexec with the --pdf option.

�
�

�
�

�
�

mailto:pragma@wxs.nl

content The pdfTEX user manual exit

• Hypertexted pdf from texinfo documents can be created with pdftexinfo.tex, which is a slight mod-

ification of the standard texinfo macros. This file is part of the pdfTEX distribution.

• A similar modification of webmac.tex, called pdfwebmac.tex, allows production of hypertext’d pdf ver-

sions of programs written in web. This is also part of the pdfTEX distribution.

Some nice samples of pdfTEX output can be found on the tug web server, at http://www.tug.org

/applications/pdftex and http://www.ntg.nl/context.

5 Setting up fonts
pdfTEX can work with Type 1 and TrueType fonts, but a source must be available for all fonts used in the

document, except for the 14 base fonts supplied by Acrobat Reader (Times, Helvetica, Courier, Symbol and

Dingbats). It is possible to use METAFONT--generated fonts in pdfTEX— but it is strongly recommended not

to use METAFONT--fonts if an equivalent is available in Type 1 or TrueType format, if only because bitmap

Type 3 fonts render very poorly in Acrobat Reader. Given the free availability of Type 1 versions of all the

Computer Modern fonts, and the ability to use standard PostScript fonts, most TEX users should be able to

experiment with pdfTEX.

5.1 Map files

pdfTEX reads the map files, specified in the configuration file, see section 3.6, in which reencoding and partial

downloading for each font are specified. Every font needed must be listed, each on a separate line, except

pk fonts. The syntax of each line is similar to dvips map files3 and can contain up to the following (some

are optional) fields: texname, basename, fontflags, fontfile, encodingfile and special. The only mandatory

is texname and must be the first field. The rest is optional, but if basename is given, it must be the second

3dvips map files can be used with pdfTEX without problems.

�
�

�
�

�
�

http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/
http://www.ntg.nl/context/

content The pdfTEX user manual exit

field. Similarly if fontflags is given it must be the third field (if basename is present) or the second field (if

basename is left out). It is possible to mix the positions of fontfile, encodingfile and special, however the

first three fields must be given in fixed order.

texname sets the name of the tfm file. This name must be given for each font.

basename sets the base (PostScript) font name. If not given then it will be taken from the font file.

Specifying a name that doesn’t match the name in the font file will cause pdfTEX to write a warning, so it is

best not to have this field specified if the font resource is available, which is the most common case. This

option is primarily intended for use of base fonts and for compatibility with dvips map files.

fontflags specify some characteristics of the font. The next description of these flags are taken, with a

slight modification, from the pdf Reference Manual (the section on Font Descriptor Flags).

The value of the flags key in a font descriptor is a 32--bit integer that contains a collection of boolean

attributes. These attributes are true if the corresponding bit is set to 1. Table 2 specifies the meanings

of the bits, with bit 1 being the least significant. Reserved bits must be set to zero.

All characters in a fixed--width font have the same width, while characters in a proportional font have

different widths. Characters in a serif font have short strokes drawn at an angle on the top and

bottom of character stems, while sans serif fonts do not have such strokes. A symbolic font contains

symbols rather than letters and numbers. Characters in a script font resemble cursive handwriting.

An all--cap font, which is typically used for display purposes such as titles or headlines, contains no

lowercase letters. It differs from a small--cap font in that characters in the latter, while also capital

letters, have been sized and their proportions adjusted so that they have the same size and stroke

weight as lowercase characters in the same typeface family.

Bit 6 in the flags field indicates that the font’s character set conforms the Adobe Standard Roman

Character Set, or a subset of that, and that it uses the standard names for those characters.

�
�

�
�

�
�

content The pdfTEX user manual exit

bit position semantics

1 Fixed--width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

6 Uses the Adobe Standard Roman Character Set

7 Italic

8–16 Reserved

17 All--cap font

18 Small--cap font

19 Force bold at small text sizes

20–32 Reserved

Table 2 The meaning of flags in the font descriptor.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels even

at very small text sizes. Typically, when characters are drawn at small sizes on very low resolution

devices such as display screens, features of bold characters may appear only one pixel wide. Because

this is the minimum feature width on a pixel--based device, ordinary non--bold characters also appear

with one--pixel wide features, and cannot be distinguished from bold characters. If bit 19 is set,

features of bold characters may be thickened at small text sizes.

If the font flags are not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the correct

value, it would be best not to specify it, as specifying a bad value of font flags may cause troubles in viewers.

On the other hand this option is not absolutely useless because it provides backward compatibility with

older map files (see the fontfile description below).

�
�

�
�

�
�

content The pdfTEX user manual exit

fontfile sets the name of the font source file. This must be a Type 1 or TrueType font file. The font file

name can be preceded by one or two special characters, which says how the font file should be handled.

• If it is preceded by a < the font file will be partly downloaded, which means that only used glyphs

(characters) are embedded to the font. This is the most common use and is strongly recommended for

any font, as it ensures the portability and reduces the size of the pdf output. Partial fonts are included

in such a way that name and cache clashes are minimalized.

• In case the font file name is preceded by a double <<, the font file will be included entirely — all glyphs of

the font are embedded, including the ones that are not used in the document. Apart from causing large

size pdf output, this option may cause troubles with TrueType fonts too, so it is not recommended. It

might be useful in case the font is untypical and can not be subsetted well by pdfTEX. Beware: some font

vendors forbid full font inclusion.

• In case nothing preceded the font file name, the font file is read but nothing is embedded, only the font

parameters are extracted to generate the so--called font descriptor, which is used by Acrobat Reader to

simulate the font if needed. This option is useful only when you do not want to embed the font (i.e. to

reduce the output size), but wish to use the font metrics and let Acrobat Reader generate instances that

look close to the used font in case the font resource is not installed on the system where the pdf output

will be viewed or printed. To use this feature the font flags must be specified, and it must have the bit 6

set on, which means that only fonts with the Adobe Standard Roman Character Set can be simulated. The

only exception is in case of Symbolic font, which is not very useful.

• If the font file name is preceded by a !, the font is not read at all, and is assumed to be available on

the system. This option can be used to create pdf files which do not contain embedded fonts. The pdf

output then works only on systems where the resource of the used font is available. It’s not very useful

for document exchange, as the pdf is not ‘portable’ at all. On the other hand it is very useful when

you wish to speed up running of pdfTEXbefont

content The pdfTEX user manual exit

feature requires Acrobat Reader to have access to installed fonts on the system. This has been tested on

Win95 and Unix (Solaris).

Note that the standard 14 fonts are never downloaded, even when they are specified to be downloaded

in map files. When one suffers from invalid lookups, for instance when pdfTEX tries to open a .pfa file

instead of a .pfb one, one can add the suffix to the filename. In this respect, pdfTEX completely relies on

the kpathsea libraries.

encoding specifies the name of the file containing the external encoding vector to be used for the font. The

file name may be preceded by a <, but the effect is the same. The format of the encoding vector is identical

to that used by dvips. If no encoding is specified, the font’s built--in default encoding is used. It may be

omitted if you are sure that the font resource has the correct built--in encoding. In general this option is

highly preferred and is required when subsetting a TrueType font.

special instructions can be used to manipulate fonts similar to the way dvips does. Currently only the

keyword SlantFont is interpreted, other instructions are just ignored.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix .pgc, which is a

so--called pgc source (pdf Glyph Container)4 . If no pgc source is available, pdfTEX will try to use pk fonts

in a normal way as dvi drivers do, on--the--fly creating pk fonts if needed.

Lines containing nothing apart from texname stand for scalable Type 3 fonts. For scalable fonts as Type 1,

TrueType and scalable Type 3 font, all the fonts loaded from a tfm at various sizes will be included only once

in the pdf output. Thus if a font, let’s say csr10, is described in one of the map files, then it will be treated

as scalable. As a result the font source for csr10 will be included only once for csr10, csr10 at 12pt etc.

4This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files can

contain whatever allowed in pdf page description, which may be used to support fonts that are not available in METAFONT. At the

moment pgc fonts are not very useful, as vector Type 3 fonts are not displayed very well in Acrobat Reader, but it may be more useful

when Type 3 font handling gets better.

�
�

�
�

�
�

content The pdfTEX user manual exit

So pdfTEX tries to do its best to avoid multiple downloading of identical font sources. Thus vector pgc fonts

should be specified as scalable Type 3 in map files like:

csr10

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source will be

downloaded multiple times for various sizes, which causes a much larger pdf output. On the other hand if

a font is in the map files is defined as scalable Type 3 font and its pgc source is not scalable or not available,

pdfTEX will use pk font instead; the pdf output is still valid but some fonts may look ugly because of the

scaled bitmap.

A SlantFont is specified similarly as for dvips. A SlantFont or ExtendFont must be used with embedding

font file. Note that the base name, the PostScript name like Symbol or Times--Roman, cannot be given, as

pdfTEX never embeds a base font.

psyr Symbol

psyro ".167 SlantFont" <usyr.pfb

ptmr8r Times-Roman <8r.enc

To summarize this rather confusing story, we include some sample lines. First we use a built--in font with

font--specific encoding, i.e. neither a download font nor an external encoding is given.

psyr Symbol

pzdr ZapfDingbats

Use a built--in font with an external encoding. The < preceded encoding file may be left out.

ptmr8r Times-Roman <8r.enc

ptmri8r Times-Italic <8r.enc

Use a partially downloaded font with an external encoding:

�
�

�
�

�
�

content The pdfTEX user manual exit

putr8r Utopia-Regular <8r.enc <putr8a.pfb

putri8r Utopia-Italic <8r.enc <putri8a.pfb

putro8r Utopia-Regular <8r.enc <putr8a.pfb ".167 SlantFont"

Use some faked font map entries:

logo8 <logo8.pfb

logo9 <logo9.pfb

logo10 <logo10.pfb

logosl8 <logo8.pfb ".25 SlantFont"

logosl9 <logo9.pfb ".25 SlantFont"

logosl10 <logosl10.pfb

logobf10 <logobf10.pfb

Use an ascii subset of OT1 and T1:

ectt1000 cmtt10 <cmtt10.map <tex256.enc

Download a font entirely without reencoding:

pgsr8r GillSans <<pgsr8a.pfb

Partially download a font without reencoding:

pgsr8r GillSans <pgsr8a.pfb

Do not read the font at all — the font is supposed to be installed on the system:

pgsr8r GillSans !pgsr8a.pfb

Entirely download a font with reencoding:

pgsr8r GillSans <<pgsr8a.pfb 8r.enc

Partially download a font with reencoding:

�
�

�
�

�
�

content The pdfTEX user manual exit

pgsr8r GillSans <pgsr8a.pfb 8r.enc

Sometimes we do not want to include a font, but need to extract parameters from the font file and reencode

the font as well. This only works for fonts with Adobe Standard Encoding. The font flags specify how such

a font looks like, so Acrobat Reader can generate similar instance if the font resource is not available on the

target system.

pgsr8r GillSans 32 pgsr8a.pfb 8r.enc

A TrueType font can be used in the same way as a Type 1 font:

verdana8r Verdana <verdana.ttf 8r.enc

5.2 TrueType fonts

As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType files is similar to Type 1

font. The only extra thing to do with TrueType is to create a tfm file. There is a program called ttf2afm in

the pdfTEX distribution which can be used to extract afm from TrueType fonts. Usage is simple:

ttf2afm -e <encoding vector> -o <afm outputfile> <ttf input file>

A TrueType file can be recognized by its suffix ttf. The optional encoding specifies the encoding, which is

the same as the encoding vector used in map files for pdfTEX and dvips. If the encoding is not given, all the

glyphs of the afm output will be mapped to /.notdef. ttf2afm writes the output afm to standard output.

If we need to know which glyphs are available in the font, we can run ttf2afm without encoding to get all

glyph names. The resulting afm file can be used to generate a tfm one by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test.map is included

in pdftex.cfg.

�
�

�
�

�
�

content The pdfTEX user manual exit

ttf2afm -e 8r.enc -o times.afm times.ttf

afm2tfm times.afm -T 8r.enc

echo "times TimesNewRomanPSMT <times.ttf <8r.enc" >>test.map

The PostScript font name (TimesNewRomanPSMT) is reported by afm2tfm, but from pdfTEX version 0.12l

onwards it may be left out.

There are two main restrictions with TrueType fonts in comparison with Type 1 fonts:

a. The special effects SlantFont/ExtendFont cannot be used.

b. To subset a TrueType font, the font must be specified as reencoded, therefore an encoding vector must

be given.

6 Formal syntax specification
This sections formaly specifies the pdfTEX specific extensions to the TEX macro programming language. First

we present some general definitions. All 〈general text〉 is expanded immediately, like \special in traditional

TEX, unless mentioned explicitly no to.

〈general text〉 → 〈filler〉 { 〈balanced text〉 〈right brace〉
〈attr spec〉 → attr 〈general text〉
〈object type spec〉 → [〈attr spec〉] stream | [〈attr spec〉] file

〈resources spec〉 → resources 〈general text〉
〈file spec〉 → file 〈general text〉
〈page spec〉 → page 〈integer〉
〈action spec〉 → user 〈user-action spec〉 | goto 〈goto-action spec〉 |

thread 〈thread-action spec〉
〈newwindow spec〉 → newwindow | nonewwindow

〈user-action spec〉 → user 〈general text〉

�
�

�
�

�
�

content The pdfTEX user manual exit

〈goto-action spec〉 → 〈numid〉 |
[〈file spec〉] 〈nameid〉 |
[〈file spec〉] 〈page spec〉 〈general text〉 |
〈file spec〉 〈nameid〉 〈newwindow spec〉 |
〈file spec〉 〈page spec〉 〈general text〉 〈newwindow spec〉

〈numid〉 → num 〈integer〉
〈nameid〉 → name 〈general text〉
〈thread-action spec〉 → [〈file spec〉] 〈numid〉 | [〈file spec〉] 〈nameid〉
〈dest spec〉 → 〈numid〉 〈dest type〉 | 〈nameid〉 〈dest type〉
〈dest type〉 → xyz [zoom 〈integer〉] |

fitbh | fitbv | fitb | fith | fitv | fitr 〈rule spec〉 | fit

〈id spec〉 → 〈numid〉 | 〈nameid〉
pdfTEX introduces the following new primitives. Each primitive is prefixed by pdf except for \efcode and

the extended font primitive.

\pdfoutput (integer)
\pdfcompresslevel (integer)
\pdfdecimaldigits (integer)
\pdfmovechars (integer)
\pdfpkresolution (integer)
\pdfpagewidth (dimension)
\pdfpageheight (dimension)
\pdfhorigin (dimension)
\pdfvorigin (dimension)
\pdfpagesattr (tokens)
\pdfpageattr (tokens)
\pdfinfo 〈general text〉

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfcatalog 〈general text〉 [openaction 〈action spec〉]
\pdfnames 〈general text〉
\font [〈font spec〉] [stretch 〈integer〉] [shrink 〈integer〉] [step 〈integer〉]
\pdfadjustspacing (integer)
\efcode (integer)
\pdffontname 〈font〉 (expandable)
\pdffontobjnum 〈font〉 (read--only integer)
\pdfincludechars 〈font〉 〈general text〉
\pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉
\pdfrefxform 〈integer〉
\pdflastxform (read--only integer)
\pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] 〈file spec〉
\pdfrefximage 〈integer〉
\pdflastximage (read--only integer)
\pdfimageresolution (integer)
\pdfannot [〈rule spec〉] 〈general text〉
\pdflastannot (read--only integer)
\pdfdest 〈dest spec〉
\pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉
\pdfendlink

\pdflinkmargin (dimension)
\pdfoutline 〈action spec〉 [count 〈integer〉] 〈general text〉
\pdfthread 〈rule spec〉 [〈attr spec〉] 〈id spec〉
\pdfthreadmargin (dimension)
\pdfliteral [direct] 〈general text〉
\pdfobj [〈object type spec〉] 〈general text〉

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdflastobj (read--only integer)
\pdfrefobj 〈integer〉
\pdftexversion (read--only integer)
\pdftexrevision (expandable)

7 New primitives
Here follows a short description of new primitives added by pdfTEX. One way to learn more about how to use

these primitives is to have a look at the file example.tex in the pdfTEX distribution. Each pdfTEX specific

primitive is prefixed by \pdf.

The parameters that are marked as default: from configuration take their value from the configuration file.

Note that if the output is dvi then the dimension parameters are not set to the configuration values and

not used at all. However some pdfTEX integer parameters can affect the pdf as well as dvi output (currently

\pdfoutput and \pdfadjustspacing).

7.1 Document setup

ñ \pdfoutput (integer)

This parameter specifies whether the output format should be dvi or pdf. A positive value means pdf

output, otherwise one gets dvi output. This parameter cannot be specified after shipping out the first page.

In other words, this parameter must be set before pdfTEX ships out the first page if we want pdf output. This

is the only one parameter that must be set to produce pdf output. All others are optional. This parameter

cannot be set after the first page is shipped out.

When pdfTEX starts complaining about specials, one can be sure that the macro package is not aware of this

mode. A simple way of making macros pdfTEX aware is:

�
�

�
�

�
�

content The pdfTEX user manual exit

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi

\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

However, there are better ways to handle these things.

ñ \pdfcompresslevel (integer)

This integer parameter specifies the level of text compression via zlib. Zero means no compression, 1 means

fastest, 9 means best, 2..8 means something in between. A value out of this range will be adjusted to the

nearest meaningful value. This parameter is read each time pdfTEX starts a stream.

ñ \pdfdecimaldigits (integer)

This parameter specifies the accuracy of real numbers as written to the in pdf file. It gives the maximal

number of decimal digits after the decimal point of real numbers. Valid values are in range 0..5. A higher

value means a more precise output, but also results in a much larger file size and more time to display or

print. In most cases the optimal value is 2. This parameter does not influence the precision of numbers

used in raw pdf code, like that used in \pdfliteral and annotation action specifications. This parameter

is read when pdfTEX writes a real number to the pdf output.

When including huge METAPOST images using supp-pdf.tex, one can limit the accuracy to two digits by

saying: \twodigitMPoutput.

ñ \pdfmovechars (integer)

This parameter specifies whether pdfTEX should try to move characters in range 0..31 to higher slots. When

set to 1, this feature affects only to fonts that have all character codes below 128, which applies to for instance

the Computer Moderd Roman fonts. When set to 2 or higher pdfTEX will try to move those characters to free

slots in encoding array, even in case the font contains characters with code greater than or equal to 128.

This parameter is read when pdfTEX writes a character of a font to the pdf output at which moment it has

to decide whether to move the character or not.

�
�

�
�

�
�

content The pdfTEX user manual exit

ñ \pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded pk fonts and is read when pdfTEX

downloads a pk font during finishing the pdf output. Currently bitmap fonts are displayed poorly, so use

Type 1 fonts when available!

ñ \pdfpagewidth (dimension)

This dimension parameter specifies the page width of the pdf output, being the screen, the paper or whatr-

ever the page content is put on. pdfTEX reads this parameter when it starts shipping out a page. When at

this moment the value is still 0, the page width is calculated as wbox being shipped out + 2× (horigin + \hoffset).

Like the next one, this value replaces the value set in the configuration file. When part of the page falls of

the paper or screen, you can be rather sure that this parameter is set wrong.

ñ \pdfpageheight (dimension)

Similar to the previous one, this dimension parameter specifying the page height of the pdf output. If not

given then the page height will be calculated as mentioned above.

ñ \pdfhorigin (dimension)

This parameter can be used to set the horizontal offset the output box from the top left corner of the page.

A value of 1 inch corresponds to the normal TEX offset. This parameter is read when pdfTEX starts shippin

gout a page to the pdf outout.

ñ \pdfvorigin (dimension)

This parameter is the vertical alternative of \pdfhorigin. Keep in mind that the TEX coordinate system

starts in the top left corner, while the pdf one starts at the bottom.

ñ \pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the pdf output and adds the resulting character stream to the

root Pages object. When sound, these are applied to all pages in the document. Some examples of attributes

�
�

�
�

�
�

content The pdfTEX user manual exit

are /MediaBox, the rectangle specifying the natural size of the page, /CropBox, the rectangle specifying the

region of the page being displayed and printed, and /Rotate, the number of degrees (in multiples of 90) the

page should be rotated clockwise when it is displayed or printed.

\pdfpagesattr

{ /Rotate 90 % rotate all pages by 90 degrees

/MediaBox [0 0 612 792] } % the media size of all pages (in bp)

ñ \pdfpageattr (tokens)

This is similar to \pdfpagesattr, but it takes priority to the former one. It can be used to overwrite any

attribute given by \pdfpagesattr for individual pages. The token list is expanded when pdfTEX ships out

a page. The contents are added to the attributes of the current page.

7.2 The document info and catalog

ñ \pdfinfo 〈general text〉

This primitive allows the user to add information to the document info section; if this information is pro-

vided, it can be extracted by Acrobat Reader (version 3.1: menu option Document Information, General).

The 〈general text〉 is a collection of key--value--pairs. The key names are preceded by a /, and the values, be-

ing strings, are given between parentheses. All keys are optional. Possible keys are /Author, /CreationDate

(defaults to current date), /ModDate, /Creator (defaults to TeX), /Producer (defaults to pdfTeX), /Title,

/Subject, and /Keywords.

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmss, where YYYY is the year, MM is

the month, DD is the day, hh is the hour, mm is the minutes, and ss is the seconds.

Multiple appearances of \pdfinfo will be concatenated to only one. If a key is given more than once, then

the first appearance will take priority. An example of the use of \pdfinfo is:

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfinfo

{ /Title (example.pdf)

/Creator (TeX)

/Producer (pdfTeX 0.14a)

/Author (Tom and Jerry)

/CreationDate (D:19980212201000)

/ModDate (D:19980212201000)

/Subject (Example)

/Keywords (mouse,cat) }

ñ \pdfcatalog 〈general text〉 [openaction 〈action spec〉]

Similar to the document info section is the document catalog, where keys are /URI, which provides the

base url of the document, and /PageMode determines how Acrobat displays the document on startup. The

possibilities for the latter are explained in Table 3:

value meaning

/UseNone neither outline nor thumbnails visible

/UseOutlines outline visible

/UseThumbs thumbnails visible

/FullScreen full--screen mode

Table 3 Supported /PageMode values.

In full--screen mode, there is no menu bar, window controls, nor any other window present. The default

setting is /UseNone.

�
�

�
�

�
�

content The pdfTEX user manual exit

The 〈openaction〉 is the action provided when opening the document and is specified in the same way as

internal links, see section 7.7. Instead of using this method, one can also write the open action directly into

the catalog.

ñ \pdfnames 〈general text〉

This primitive inserts the text to /Names array. The text must be conform to the specifications as laid down

in the pdf Reference Manual, otherwise the document can be invalid.

7.3 Fonts

ñ \font [〈font spec〉] [stretch 〈integer〉] [shrink 〈integer〉] [step 〈integer〉]

Although still in an experimental stage, and therefore subjected to changes, the next extension to the TEX

primitive font is worth mentioning.

\font\somefont=somefile at 10pt stretch 30 shrink 20 step 10

The stretch 30 shrink 20 step 5 means as much as: “hey TEX, when things are going to bad, you may

stretch the glyphs in this font as much as 3% or shrink them by 2%”. Because pdfTEX uses internal datastruc-

tures with fixed widths, each additional width also means an additional font. For practical reasons pdfTEX

uses discrete steps, in this example a 1% one. This means that for font somefile upto 6 differently scaled

alternatives are used. When no step is specified, 0.5% steps are used.

Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TEX cannot

break a line in the appropriate way, the unbreakable parts of the word will stick into the margin. When

pdfTEX notes this, it will try to scale (shrink) the glyphs in that line using fixed steps, until the line fits. When

lines are too spacy, the opposite happens: pdfTEX starts scaling (stretching) the glyphs until the white space

gaps is acceptable.

�
�

�
�

�
�

content The pdfTEX user manual exit

The additional fonts are named as somefile+10 or somefile-15, and tfm files with these names and

appropriate dimensions must be available. So, each scaled font must have its own tfm file! When no tfm file

can be found, pdfTEX will try to generate it by executing the script mktextfm, where available and supported.

This mechanism is inspired on an optimization first introduced by Herman Zapf, which in itself goes back to

optimizations used in the early days of typesetting: use different glyphs to optimize the greyness of a page.

So, there are many, slightly different a’s, e’s, etc. For practical reasons pdfTEX does not use such huge glyph

collections; it uses horizontal scaling instead. This is sub--optimal, and for many fonts, sort of offending to

the design. But, when using pdf, it’s not that illogical at all: pdf viewers use so called Multiple Master fonts

when no fonts are embedded and/or can be found on the target system. Such fonts are designed to adapt

their design to the different scaling parameters. It is up to the user to determine to what extend mixing

slightly remastered fonts can be used without violating the design. Think of an O: when simply stretched,

the vertical part of the glyph becomes thicker, and looks incompatible to an unscaled original. In a multiple

master, one can decide to stretch but keep this thickness compatible.

ñ \pdfadjustspacing (integer)

The output that pdfTEX produces is pretty compatible with the normal TEX output: TEX’s typesetting engine is

normally unchanged, because the optimization described here is turned off by default. At this moment there

are two methods provided. When \pdfadjustspacing is set to 1, stretching is applied after TEX’s normal

paragraph breaking routines have broken the paragraph into lines. In this case, line breaks are identical to

standard TEX behaviour.

When set to 2, the width changes that are the result of stretching and shrinking are taken into account while

the paragraph is broken into lines. In this case, line breaks are likely to be different from those of standard

TEX. In fact, paragraphs may even become longer or shorter.

Both alternatives use the extended collection of tfm files that are related to the stretch and shrink settings

as described in the previous section.

�
�

�
�

�
�

content The pdfTEX user manual exit

ñ \efcode (integer)

We didn’t yet tell the whole story. One can imagine that some glyphs are more sensitive to scaling than

others. The \efcode primitive can be used to influence the stretchability of a glyph. The syntax is similar

to \sfcode, and defaults to 1000, meaning 100%.

\efcode‘A=2500

\efcode‘O=0

In this example an A may stretch 2.5 times as much as normal and the O is not to be stretched at all. The

minimum and maximum stretch is however bound by the font specification, otherwise one would end up

with more fonts inclusions than comfortable.

ñ \pdffontname 〈font〉 (expandable)

In pdf files produced by pdfTEX, one can recognize a font switch by the prefix F followed by a number, for

instance /F12 or /F54. This command returns the number pdfTEX uses to name a font resource, e.g. for a

font named as /F12 this command returns number 12.

ñ \pdffontobjnum 〈font〉 (read--only integer)

This command is similar to \pdffontname, but returns the object number instead of the name of a font.

Use of \pdffontname and \pdffontobjnum allows user full access to all the font resources used in the

document.

ñ \pdfincludechars 〈font〉 〈general text〉

This command causes pdfTEX to treat the characters in 〈general text〉 as if they were used with 〈font〉 , which

means that the corresponding glyphs will be embedded into the font resources in the pdf output. Nothing

is appended to the list being built.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.4 XObject forms

The next three primitives support a pdf feature called ‘object reuse’ in pdfTEX. The idea is first to create

a XObject form in pdf. The content of this object corresponds to the content of a TEX box, which can also

contain pictures and references to other XObject form objects as well. After that the XObject form can be

used by simply referring to its object number. This feature can be useful for large documents with a lot of

similar elements, as it can reduce the duplication of identical objects.

These command behave similar \pdfobj, \pdflastobj and \pdfrefobj but instead of taking raw pdf code,

they take care of text typeset by TEX.

ñ \pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉

This command creates a XObject form corresponding to the contents of the box 〈box number〉 . The box can

contain other raw objects, XObject forms or images as well. It can however not contain annotations because

they are laid out on a separate layer, are positioned absolutely, and have a dedicated housekeeping.

When 〈attr spec〉 is given, the text will be written as additional attributes of the form. The 〈resources spec〉 is

similar, but the text will be added to the resources dictionary of the form. The text given

by 〈attr spec〉 or 〈resources spec〉 is written before other keys of the form dictionary and/or the resources

dictionary and takes priority to the further ones.

ñ \pdfrefxform 〈integer〉

The form is kept in memory and will be written to the pdf output only when its number is refered to by

\pdfrefxform or \pdfxform is preceded by \immediate. Nothing is appended to the list being built. The

number of the most recently created XObject form is accessible via \pdflastxform.

When issued, \pdfrefxform appends a whatsit node to the list being built. When the whatsit node is

searched at shipping time, pdfTEX will write the form with number 〈integer〉 to the pdf output if it is not

written yet.

�
�

�
�

�
�

content The pdfTEX user manual exit

ñ \pdflastxform (read--only integer)

The number of the most recently created XObject form is accessible via \pdflastxform.

As said, this feature can be used for reusing information. This mechanism also plays a role in typesetting

fill--in form. Such widgets sometimes depends on visuals that show up on user request, but are hidden

otherwise.

7.5 Graphics inclusion

pdf provides a mechanism for embedding graphic and textual objects: XObject forms. In pdfTEX this mech-

anism is accessed by means of \pdfxform, \pdflastxform and \pdfrefxform. A special kind of XObjects

are bitmap graphics and for manipulating them similar commands are provided.

ñ \pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] 〈file spec〉

This command creates an image object. The dimensions of the image can be controlled via 〈rule spec〉 . The

default values are zero for depth and ‘running’ for height and width. If all of them are given, the image

will be scaled to fit the specified values. If some of them (but not all) are given, the rest will be set to a

value corresponding to the remaining ones so as to make the image size to yield the same proportion of

width : (height + depth) as the original image size, where depth is treated as zero. If none of them is

given then the image will take its natural size.

An image inserted at its natural size often has a resolution of \pdfimageresolution (see below) given in

dots per inch in the output file, but some images may contain data specifying the image resolution, and in

such a case the image will be scaled to the correct resolution. The dimension of the image can be accessed

by enclosing the \pdfrefximage command to a box and checking the dimensions of the box:

\setbox0=\hbox{\pdfximage{somefile.png}\pdfrefximage\pdflastximage}

�
�

�
�

�
�

content The pdfTEX user manual exit

Now we can use \wd0 and \ht0 to question the natural size of the image as determined by pdfTEX. When

dimensions are specified before the {somefile.pdf}, the graphic is scaled to fit these. Opposite to for

instance the \input primitive, the filename is supplied between braces.

The image type is specified by the extension of the given file name, so .png stands for png image, tif for

tiff, and .pdf for pdf file. Otherwise the image is treated as pdf (pdf).

Similarly to \pdfxform, the optional text given by 〈attr spec〉 will be written as additional attributes of the

image before other keys of the image dictionary.

ñ \pdfrefximage 〈integer〉
The image is kept in memory and will be written to the pdf output only when its number is refered to by

\pdfrefximage or \pdfximage is preceded by \immediate. Nothing is appended to the list being built.

\pdfrefximage appends a whatsit node to the list being built. When the whatsit node is searched at shipping

time, pdfTEX will write the image with number 〈integer〉 to the pdf output if it has not been written yet.

ñ \pdflastximage (read--only integer)

The number of the most recently created XObject image is accessible via \pdflastximage.

ñ \pdfimageresolution (integer)

This parameter specifies the default resolution of included bitmap images (png, tiff, and jpeg). This pa-

rameter is read when pdfTEX creates an image via \pdfximage. When not given or set to 0 pdfTEX treates it

as 72.

7.6 Annotations

pdf level 1.2 provides four basic kinds of annotations:

• hyperlinks, general navigation

• text clips (notes)

�
�

�
�

�
�

content The pdfTEX user manual exit

• movies

• sound fragments

The first type differs from the other three in that there is a designated area involved on which one can

click, or when moved over some action occurs. pdfTEX is able to calculate this area, as we will see later. All

annotations can be supported using the next two general annotation primitives.

ñ \pdfannot [〈rule spec〉] 〈general text〉

This command appends a whatsit node corresponding to an annotation to the the list being built. The

dimensions of the annotation can be controlled via Something rule spec. The default values are running for all

width, height and depth. When an annotation is written out, running dimensions will take the corresponding

values from the box containing the whatsit node representing the annotation. The 〈general text〉 is inserted

as raw pdf code to the contents of annotation. The annotation is written out only if the corresponding

whatsit node is searched at the shipping time.

ñ \pdflastannot (read--only integer)

This primitive returns the object number of the last annotation created by \pdfannot. These two primitives

allow users to create any annotation that cannot be created by \pdfstartlink (see below).

7.7 Destinations and links

The first type of annotation mentioned before, is implemented by three primitives. The first one is used to

define a specific location as being referred to. This location is tied to the page, not the exact location on the

page. The main reason for this is that pdf maintains a dedicated list of these annotations —and some more

when optimized— for the sole purpose of speed.

�
�

�
�

�
�

content The pdfTEX user manual exit

ñ \pdfdest 〈dest spec〉

This primitive appends a whatsit node which establishes a destination for links and bookmark outlines; the

link is identified by either a number or a symbolic name, and the way the viewer is to display the page must

be specified in 〈dest type〉 , which must be one of those mentioned in table 4.

keyword meaning

fit fit the page in the window

fith fit the width of the page

fitv fit the height of the page

fitb fit the ‘Bounding Box’ of the page

fitbh fit the width of ‘Bounding Box’ of the page

fitbv fit the height of ‘Bounding Box’ of the page

xyz goto the current position (see below)

Table 4 The outline and destination appearances.

The specification xyz can optionally be followed by zoom 〈integer〉 to provide a fixed zoom--in. The Some-

thing integer is like TEX magnification, i.e. 1000 is the ‘normal’ page view. When zoom 〈integer〉 is given the

zoom factor changes to number, otherwise the current zoom factor is kept unchange.d

The destination is written out only the corresponding whatsit node is searched at the shipping time.

ñ \pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉

This primitive is used along with \pdfendlink and appends a whatsit node corresponding to the start of a

hyperlink. The whatsit node representing the end of the hyperlink is created by \pdfendlink. The dimen-

sions of the link are handled in the similar way as in \pdfannot. Both \pdfstartlink and \pdfendlink

must be in the same level of box nesting. A hyperlink with running width can be multi--line or even multi--

�
�

�
�

�
�

content The pdfTEX user manual exit

page, in which case all horizontal boxes with the same nesting level as the boxes containing \pdfstartlink

and \pdfendlink will be treated as part of the hyperlink. The hyperlink is written out only if the corre-

sponding whatsit node is searched at the shipping time.

Additional attributes, which are explained in great detail in the pdf Reference Manual, can be given

via 〈attr spec〉 . Typically, the attributes specify the color and thickness of any border around the link.

Thus /C [0.9 0 0] /Border [0 0 2] specifies a color (in rgb) of dark red, and a border thickness of

2 points.

While all graphics and text in a pdf document have relative positions, annotations have internally hard--

coded absolute positions. Again we’re dealing with a speed optimization. The main disadvantage is that

these annotations do not obey transformations issued by \pdfliteral’s.

The 〈action spec〉 specifies the action that should be perfomed when the hyperlink is activated while

the 〈user-action spec〉 performs a user--defined action. A typical use of the latter is to specify a url, like

/S /URI /URI (http://www.tug.org/), or a named action like /S /Named /N /NextPage.

A 〈goto-action spec〉 performs a GoTo action. Here 〈numid〉 and 〈nameid〉 specify the destination identifier

(see below). The 〈page spec〉 specifies the page number of the destination, in this case the zoom factor

is given by 〈general text〉 . A destination can be performed in another pdf file by specifying 〈file spec〉 , in

which case 〈newwindow spec〉 specifies whether the file should be opened in a new window. A 〈file spec〉 can

be either a (string) or a dictionary. The default behaviour of the 〈newwindow spec〉 depends on the

browser setting.

A 〈thread-action spec〉 performs an article thread reading. The thread identifier is similar to the destination

identifier. A thread can be performed in another pdf file by specifying a 〈file spec〉 .

ñ \pdfendlink

This primitive ends a link started with \pdfstartlink. All text between \pdfstartlink and \pdfendlink

will be treated as part of this link. pdfTEX may break the result across lines (or pages), in which case it will

�
�

�
�

�
�

content The pdfTEX user manual exit

make several links with the same content.

ñ \pdflinkmargin (dimension)

This dimension parameter specifies the margin of the box representing a hyperlink and is read when a page

containing hyperlinks is shipped out.

7.8 Bookmarks

ñ \pdfoutline 〈action spec〉 [count 〈integer〉] 〈general text〉

This primitive creates an outline (or bookmark) entry. The first parameter specifies the action to be taken, and

is the same as that allowed for \pdfstartlink. The 〈count〉 specifies the number of direct subentries under

this entry; specify 0 or omit it if this entry has no subentries. If the number is negative, then all subentries

will be closed and the absolute value of this number specifies the number of subentries. The 〈text〉 is what

will be shown in the outline window. Note that this is limited to characters in the pdf Document Encoding

vector. The outline is written to the pdf output immediately.

7.9 Article threads

ñ \pdfthread 〈rule spec〉 [〈attr spec〉] 〈id spec〉

Defined an article thread. Treads with same identifiers (spread across the document) will be joined together.

ñ \pdfthreadmargin (dimension)

Specifies a margin to be added to the thread dimensions.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.10 Miscellaneous

ñ \pdfliteral [direct] 〈general text〉
Like \special in normal TEX, this command inserts raw pdf code into the output. This allows support

of color and text transformation. This primitive is heavily used in the METAPOST inclusion macros. Nor-

mally pdfTEX ends a text section in the pdf output and resets the transformation matrix before insert-

ing 〈general text〉 , however it can be turned off by giving the optional keyword direct . This command

appends a whatsit node to the list being built. 〈general text〉 is expanded when the whatsit node is created

and not when it is shipped out, so this primitive behaves like \special.

ñ \pdfobj [〈object type spec〉] 〈general text〉
This command creates a raw pdf object that ends op in the pdf file as 1 0 obj << . . . >> endobj.

When 〈object type spec〉 is not given, a dictionary object with contents 〈general text〉 is created.

When however 〈object type spec〉 is given as 〈attr spec〉 stream , the object will be created as a stream with

contents 〈general text〉 and additional attributes in 〈attr spec〉 .

When 〈object type spec〉 is given as 〈attr spec〉 file , then the 〈general text〉 will be treated as a file name

and its contents will be copied into the stream contents.

The object is kept in memory and will be written to the pdf output only when its number is refered to by

\pdfrefobj or when \pdfobj is preceded by \immediate. Nothing is appended to the list being built. The

number of the most recently created object is accessible via \pdflastobj.

ñ \pdflastobj (read--only integer)

This command returns the object number of the last object created by \pdfobj.

ñ \pdfrefobj 〈integer〉
This command appends a whatsit node to the list being built. When the whatsit node is searched at shipping

time, pdfTEX will write the object with number 〈integer〉 to the pdf output if it has not been written yet.

�
�

�
�

�
�

content The pdfTEX user manual exit

ñ \pdftexversion

Returns the version of pdfTEX multiplied by 100, e.g. for version 0.13x it returns 13. This document is

typeset with version 14.e.

ñ \pdftexrevision

Returns the revision of pdfTEX, e.g. for version 0.14a it returns a.

8 Graphics and color
pdfTEX supports inclusion of pictures in png, jpeg, tiff and pdf format. The most common technique —the

inclusion of eps figures— is replaced by pdf inclusion. eps files can be converted to pdf by GhostScript,

Acrobat Distiller or other PostScript--to--pdf convertors. The BoundingBox of a pdf file is taken from

CropBox if available, otherwise from the MediaBox. To get the right BoundingBox from a eps file, before

converting to pdf, it is necessary to transform the eps file so that the start point is at the (0,0) coordinate

and the page size is set exactly corresponding to the BoundingBox. A Perl script (epstopdf) for this purpose

has been written by Sebastian Rahtz. The TEXutil utility script that comes with ConTEXt can so a similar

job. (Concerning this conversion, it handles complete directories, removes some garbage from files, takes

precautions against duplicate conversion, etc.)

Other alternatives for graphics in pdfTEX are:

LATEX picture mode Since this is implemented simply in terms of font characters, it works in exactly the

same way as usual.

Xy--pic If the PostScript back--end is not requested, Xy-pic uses its own Type 1 fonts, and needs no special

attention.

tpic The ‘tpic’ \special commands (used in some macro packages) can be redefined to produce literal

pdf, using some macros written by Hans Hagen.

�
�

�
�

�
�

content The pdfTEX user manual exit

METAPOST Although the output of METAPOST is PostScript, it is in a highly simplified form, and a META

POST to pdf conversion (written by Hans Hagen and Tanmoy Bhattacharya) is implemented as a set of macros

which reads METAPOST output and supports all of its features.

pdf It is possible to insert arbitrary one--page--only pdf files, with their own fonts and graphics, into a

document. The front page of this document is an example of such an insert, it is an one page document

generated by pdfTEX.

For new work, the METAPOST route is highly recommended. For the future, Adobe has announced that they

will define a specification for ‘encapsulated pdf’, and this should solve some of the present difficulties.

The inclusion of raw PostScript commands —a technique utilized by for instance the pstricks package—

cannot be supported. Although pdf is a direct descendant of PostScript, it lacks any programming language

commands, and cannot deal with arbitrary PostScript.

Abbreviations
In this document we used a few abbreviations. For convenience we mention their meaning here.

afm Adobe Font Metrics

ascii American Standard Code for Information Interchange

CMacTEX MacIntosh Web2c distribution

ConTEXt general purpose macro package

djgpp DJ Delorie’s gnu Programming Platform

dvi natural TEX Device Independ fileformat

eps Encapsulated PostScript

epstopdf eps to pdf conversion tool

e-TEX an extension to TEX

fpTEX Win32 Web2c distribution

�
�

�
�

�
�

content The pdfTEX user manual exit

gnu GNU’s Not Unix

jpeg Joined Photographic Expert Group

LATEX general purpose macro package

METAFONT graphic programming environment, bitmap output

METAPOST graphic programming environment, vector output

MikTeX Win32 distribution

MSDos Microsoft DOS platform (Intel)

pdf Portable Document Format

pdfe-TEX e-TEX extension producing pdf output

pdfTEX TEX extension producing pdf output

Perl Perl programming environment

pgc pdf glyph container

pk Packed Bitmap Font

png Portable Network Graphics

PostScript PostScript

rgb Red Green Blue color specification

teTEX Unix Web2c distribution

TEX typographic language and program

TEXexec ConTEXt command line interface

TEXutil ConTEXt utility tool

tfm TEX Font Metrics

tiff Tagged Interchange File Format

tug TEX Users Group

Unix Unix platform

url Uniform Resource Locator

web literate programming environment

�
�

�
�

�
�

content The pdfTEX user manual exit

Web2c official multi--platform web environment

Win32 Microsoft Windows platform

zip compressed file format

�
�

�
�

�
�

	Introduction
	About PDF
	Getting started
	Getting sources and binaries
	Compiling
	Getting PDFTEX-specific platform-independent files
	Placing files
	Setting search paths
	The PDFTEX configuration file
	Creating formats
	Testing the installation
	Common problems

	Macro packages supporting PDFTEX
	Setting up fonts
	Map files
	TrueType fonts

	Formal syntax specification
	New primitives
	Document setup
	\pdfoutput
	\pdfcompresslevel
	\pdfdecimaldigits
	\pdfmovechars
	\pdfpkresolution
	\pdfpagewidth
	\pdfpageheight
	\pdfhorigin
	\pdfvorigin
	\pdfpagesattr
	\pdfpageattr

	The document info and catalog
	\pdfinfo
	\pdfcatalog
	\pdfnames

	Fonts
	\font
	\pdfadjustspacing
	\efcode
	\pdffontname
	\pdffontobjnum
	\pdfincludechars

	XObject forms
	\pdfxform
	\pdfrefxform
	\pdflastxform

	Graphics inclusion
	\pdfximage
	\pdfrefximage
	\pdflastximage
	\pdfimageresolution

	Annotations
	\pdfannot
	\pdflastannot

	Destinations and links
	\pdfdest
	\pdfstartlink
	\pdfendlink
	\pdflinkmargin

	Bookmarks
	\pdfoutline

	Article threads
	\pdfthread
	\pdfthreadmargin

	Miscellaneous
	\pdfliteral
	\pdfobj
	\pdflastobj
	\pdfrefobj
	\pdftexversion
	\pdftexrevision unskip unskip unskip kern .25em{$(hbox {expandable})$}kern .25emignorespaces

	Graphics and color
	Abbreviations

